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ABSTRACT
Artificial intelligence techniques for automatically completing on-
tology deficits are important for alleviating maintenance efforts.
Embedding models for knowledge graphs are effective in link pre-
diction tasks, but these models cannot deal with richer representa-
tions, such as ontologies. Recently, embedding models that consider
all logical structures and annotation axioms in an OWL ontology
have been proposed. However, combining various features may
negatively impact the concept subsumption task. This study pro-
poses two novel OWL ontology embedding models: Inverted-index
Matrix Embedding (InME) and Co-occurrence Matrix Embedding
(CoME). To capture meaningful features for predicting concept sub-
sumptions, we focus on embedding for annotation axioms to model
the similarity of entities in an ontology. These embeddings directly
extract global and local information from annotation axioms in-
stead of word-embedding models, such as Word2Vec and BERT. In
the evaluation experiments, we applied our models to the concept
subsumption task using GO, FoodOn, and HeLiS. We demonstrate
that InME outperforms existing models for GO and FoodOn, and
that CoME concatenated with OWL2Vec* outperforms existing
models for HeLiS.
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• Computing methodologies → Knowledge representation
and reasoning.
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1 INTRODUCTION
Ontology is a data management technology that supports the shar-
ing and reuse of formally represented knowledge [13]. Many ontolo-
gies have been adopted in various domains, such as the Semantic
Web and bioinformatics. They are widely used to share knowledge,
conduct semantic searches, and automatically analyze information.

It is crucial to automatically address ontology deficits because
they are labor-intensive. Although ontology reasoners, such as
HermiT [12] and ELK [15], can logically infer axioms from on-
tologies, it is impossible to infer new axioms that have no logical
connections, owing to deficits. Semantic embedding techniques
have recently been employed to infer new axioms without logical
connections. There has been considerable research on representing
entities and relations as low-dimensional vectors in knowledge
graphs (KGs) [2, 4, 21, 25, 26, 28, 30, 31]. These models are effective
in link prediction [4]; however, they cannot handle richer concept
representations in description logic (DL) and ontology.

KG embeddings have inspired the development of DL and ontol-
ogy embeddings. E2R [11] models logical structures by applying
quantum logic toALC. In embeddings for description logic EL++
[1], logical structures, such as concept subsumption, are regarded
as geometric operations [16, 20, 29]. Onto2Vec [23] treats logical ax-
ioms as text corpora for training Word2Vec [18, 19]. OPA2Vec [24]
is an extension model of Onto2Vec that additionally considers anno-
tation axioms. OWL2Vec* [6] converts logical axioms, annotation
axioms, and RDF graph walks extracted from an OWL ontology into
text corpora. BERTSubs [5] uses contextual word-embedding BERT
[8] for OWL ontologies instead of non-contextual word-embedding
Word2Vec. Most ontology embedding models can be applied to pre-
dict missing concept subsumptions in an ontology. These models
extract many features, such as logical structures and annotation
axioms, but a mixture of many features may have a negative impact
on the concept subsumption task.

In this study, we propose a method of Inverted-index Matrix
Embedding (InME) and Co-occurrenceMatrix Embedding (CoME),
which extracts the context of words and the similarity between
words in annotation axioms. To predict concept subsumptions, we
focus on capturing meaningful features of annotation axioms to
model the embedding of entities. InME extracts global information
representing the relationship between an entity and annotation
words for that entity. CoME extracts local information representing
the relationships between words in an annotation axiom. These two
embeddings do not use word-embedding models like Word2Vec
and BERT. Instead, they compress a matrix of words in annotation
axioms using an autoencoder [14]. In addition, we enhance the
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annotation words for these models by utilizing the annotations
of properties. Furthermore, InME and CoME can be concatenated
with existing embedding models, such as OWL2Vec*, to improve
prediction accuracy.

We evaluate InME and CoME on the OWL ontologies, GO [7],
FoodOn [9], and HeLiS [10] by performing the concept subsumption
task. We demonstrate that InME outperforms existing models, such
as OWL2Vec* for GO and FoodOn, and that CoME concatenated
with OWL2Vec* outperforms existing models for HeLiS in mean
reciprocal rank (MRR) for the concept subsumption task.

The contributions of this study are summarized as follows.

• InME and CoME extract global and local information from
the annotation axioms, respectively, to capture similarities
among entities.

• Annotations of properties and the embedding concatenation
are utilized to enhance for InME and CoME.

• InME outperforms existing models for GO and FoodOn,
while CoME concatenated with OWL2Vec* outperforms in
HeLiS.

The remainder of this paper is organized as follows. In Section
2, we describe the concepts of OWL ontology, OWL2Vec*, and the
autoencoder. In Section 3, we present InME and CoME, which ex-
tracts global and local information from the annotation axioms.
Furthermore, we consider the utilization of property annotations
and embedding concatenation. In Section 4, we evaluate the per-
formance of InME and CoME on three ontologies for the concept
subsumption task. Finally, we conclude the study and discuss future
research in Section 5.

2 RELATEDWORK
2.1 OWL Ontology
OWL ontologies [3] comprise

∑
= (C,R, I), where C, R and I are

sets of class names (also known as concept names), property names
(also known as role names) and individual names. Classes, proper-
ties, and individuals are represented by a unique identifier called
internationalized resource identifier (IRI). Properties are classified
into object properties, data properties, and annotation properties.

Complex classes are inductively defined by conjunction C ⊓

D, disjunction C ⊔ D, negation ¬C , existential restriction ∃R.C ,
and universal restriction ∀R.C , where C,D ∈ C, R, S ∈ R. An
OWL ontology consists of a TBox and an ABox. The TBox is a
set of axioms such as concept subsumption C ⊑ D and property
subsumption R ⊑ S . The ABox is a set of axioms, such as concept
assertion C(a) and role assertion R(a,b), where a,b ∈ I.

The target axioms on the concept subsumption task are the con-
cept subsumption C ⊑ D and concept assertion C(a). The concept
subsumption represents the subclass relation between C and D,
where C,D ∈ C. The concept assertion represents that individ-
ual a is an instance of class C , where a ∈ I, C ∈ C. C(a) can be
transformed into the subsumption {a} ⊑ C .

2.2 OWL2Vec*
OWL2Vec* [6] treats logical axioms, annotation axioms, and graph
walks as text corpora to generate word embeddings by Word2Vec

[18, 19]. Graph walks are extracted from an RDF graph projected
from an OWL ontology.

OWL2Vec* extracts three corpora: structural document Ds, lexi-
cal document Dl, and combined document Dc using logical struc-
tures, graph structures, and annotation axioms. Ds includes logical
axioms and random walks derived from the RDF graph. Dl includes
the annotations of IRI and Ds, in which IRIs are replaced with IRI-
annotation words. Words in annotation axioms are transformed
into lowercase letters, and non-English characters are removed. Dc
is a mixture of Ds and Dl. These three documents are arbitrarily
combined as text corpora to train Word2Vec.

Let e be an entity (∈ C ∪ I) in Ds, Dl, and Dc and let w be a
word excluding IRIs in all annotation axioms. OWL2Vec* provides
the embeddings of classes and individuals in two different ways
for the concept subsumption task. The first embedding Viri(e) is
defined as the embedding of the e ′s IRI in Word2Vec. The second
embedding is defined as Vword(e), which is averaged by the word
embeddings corresponding to words in Slabel(e), where Slabel(e) is
the set of words in e ′s annotations, whose property is rdfs:label.
Vword(e) is given by

Vword(e) =
1

|Slabel(e)|

∑
w ∈Slabel(e)

Vw2v(w) (1)

where Vw2v(w) is the embedding of word w in Word2Vec. If an
entity has no annotation, words, such as Lysine extracted from the
IRI Lysine_10011 are added as annotation words. In the OWL2Vec*
experiment, this process is applied to HeLiS [6].

OWL2Vec* uses a binary classifier to predict concept subsump-
tions. Let f : R2n → R be a binary classifier, such as Random
Forest (RF), MLP, SVC, or Logistic Regression (LR), where n is the
embedding dimension. The following probability ptrue indicates the
likelihood of a concept subsumption e1 ⊑ e2 being valid.

ptrue(e1, e2) = f (V (e1)| |V (e2)) (2)

where V ∈ {Viri,Vword} and | | is the concatenation of two embed-
dings. OWL2Vec* [6] reported that the RF is the best classifier of RF,
MLP, SVC, and LR. For each positive sample of concept subsump-
tion e1 ⊑ e2, negative samples are constructed by replacing e2 with
a randomly selected entity e ′2. Note that (e1 ⊑ e ′2) < Ssub ∪ Sinfer,
where Ssub is the set of concept subsumption axioms, and Sinfer
is the set of all concept subsumption axioms that can be logically
inferred from Ssub. Each class x ∈ C is assigned a ptrue(e1,x) score
using the trained classifier. Based on these scores, each class x is
ranked in descending order.

2.3 Autoencoder
Autoencoder [14] is a neural network that learns weights by mini-
mizing the discrepancy between the original and the reconstructed
data. By extracting a low-dimensional middle layer from a trained
neural network, high-dimensional data can be compressed into low-
dimensional data. The middle layer H ∈ Rd×m and reconstructed
output X ′ ∈ Rn×m are given by

H = ReLU(WinX + Bin) (3)

X ′ = σ (WoutH + Bout) (4)

1http://www.fbk.eu/ontologies/virtualcoach#Lysine_100.
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Figure 1: The comparison of logical structures and anno-
tations on the concept subsumption task for GO using
Word2Vec.

where X ∈ Rn×m is the original input,Win ∈ Rd×n andWout ∈
Rn×d are the layer weights, Bin ∈ Rd×m and Bout ∈ Rn×m are the
layer biases, and σ is the sigmoid function. The loss function to
minimize the discrepancy between X and X ′ is given by

L(X ,X ′) = −

m∑
j=1

(Xi j logX ′
i j + (1 − Xi j ) log(1 − X ′

i j )) (5)

3 METHODOLOGY
We define InME and CoME, which respectively extract global and lo-
cal information from the annotation axioms. Similarity toOWL2Vec*,
words in the annotation axioms are transformed into lowercase
letters, and non-English characters are removed before extracting
the information. The overall architecture is illustrated in Figure 2.

3.1 Logical Structures vs Annotations
Most ontology embedding models use both logical structures and
annotation axioms as corpora. Then, we compare the contribution
of logical structure axioms and annotation axioms for solving the
concept subsumption task. We generate word embeddings by the
Word2Vec model using corpora consisting either of logical structure
axioms or annotation axioms. There are two methods to convert
word embedding to entity embedding: Viri and Vword, as described
in Section 2.2. We only applied Viri to the Word2Vec with logical
structure axioms because they have no annotation words.

Figure 1 shows the performances of Word2Vec with logical struc-
ture axioms and with annotation axioms. The mean reciprocal rank
(MRR) of annotation axioms outperforms that of logic structure
axioms. In addition, the MRR of Vword with annotations outper-
forms Viri with annotations. These results suggest that (i) utilizing
annotation axioms and (ii) employing the embedding transforma-
tion method by averaging, Vword, contribute to the performance
improvement.

3.2 Global and Local Information in
Annotations

We consider global and local information in annotation axioms of
the following Gene Ontology [7]:

GO:0021603 rdfs:label “cranial nerve formation”
GO:0021611 rdfs:label “facial nerve formation”
GO:0021620 rdfs:label “hypoglossal nerve formation”

The common parent entityGO:0021603 has child entitiesGO:0021611
and GO:0021620 as follows:

GO:0021611 ⊑ GO:0021603

GO:0021620 ⊑ GO:0021603

The annotation axioms of parent-child entities frequently exhibit
resemblances. Conversely, the similarity of annotation axioms pro-
vides highly valuable information for predicting their relationships,
regardless of the absence of logical connections. To capture the
similarity of annotation axioms, the averaging method (Equation
(1)) for transforming word embeddings into entity embeddings is
effective. For example, GO:0021603’s embedding is generated by
the average of the word embeddings of “cranial,” “nerve,” and “for-
mation.” Similarly, GO:0021611 is the average of “facial,” “nerve,”
and “formation,” and GO:0021620 is the average of “hypoglossal,”
“nerve,” and “formation.” These entity embeddings tend to be similar
due to the shared words “nerve” and “formation.” However, if the
word embeddings of the non-shared words like “cranial,” “facial,”
and “hypoglossal” are widely separated in the embedding space,
the averaging process might prevent entity embeddings from get-
ting close to each other. Therefore, it is important that the word
embeddings are distributed close together.

We present to characterize the words “cranial,” “facial,” and
“nerve” from the annotation axioms. As local information, these
words co-occur as follows:2

“cranial” co-occurs with : cranial, nerve, formation
“facial” co-occurs with : facial, nerve, formation
“nerve” co-occurs with : cranial, facial, hypoglossal,

nerve, formation

These words share similarities in terms of co-occurrence with
the same words. In this example, “cranial” co-occurs with three
words, matching the number of words in the annotation axiom
of GO:0021603. The word “cranial” might also appear in different
annotation axioms, hence local information frequently contains
a variety of word information. This local information can also be
extracted by Word2Vec with maximum window size.

Furthermore, as global information, the words “cranial,” “facial,”
and “nerve” appear in entity’s annotation axioms as follows:

“cranial” appears in : GO:0021603
“facial” appears in : GO:0021611
“nerve” appears in : GO:0021603, GO:0021611, GO:0021620

Words that appear in the annotation axiom of each entity share
similar global information. In this example, “cranial” appears in
GO:0021603’s annotation axiom, which is fewer compared to the
2Each of the words “cranial”, “facial”, and “nerve” is itself included in the co-occurrence
words to make the features of each word more similar.
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Figure 2: The overall architecture of InME and CoME. (a) The inverted-index and co-occurrence matrices are generated from
annotation axioms. (b) Thematrices are compressedwith an autoencoder and entity embeddings are transformed by averaging
the word embeddings of annotations whose property is rdfs:label. (c) An RF classifier is trained using the entity embeddings
and the concept subsumption axioms.

number of co-occurrences of “crinial” as local information. The
local information may contain excessive details due to co-occurring
words, whereas the global information consists of only essential de-
tails. While the local information may reduce the similarity among
words, the global information is more concise, and therefore the
similarity is less likely to decrease. As Word2Vec primarily captures
local information, it is unable to extract global information, which
pertains to pure entity-to-word relationships.

3.3 Inverted-index and Co-occurrence Matrices
InME extracts global information between entities and the words
used in the annotations of these entities. An inverted-index matrix
is defined as X global ∈ R |W |× |C∪I | (Figure 2(a)), whereW is the
set of words in all annotation axioms excluding IRIs. Each X

global
i j

indicates whether the wordwi appears in the annotations of entity
ej . Let Sann(e) be the set of all words in the annotations of an entity
e ∈ C ∪ I. Then, X global

i j is given by

X
global
i j =

{
1 ifwi ∈ Sann(ej )

0 otherwise
(6)

In addition, we utilize property annotations to augment the set of
annotation words. Let axe be the set of axioms containing an entity
e in the ABox or TBox and let Rann(e) be the set of words in the
annotations of property R ∈ R in axe . Then, X global+ ∈ R |W |× |C∪I |

is defined as an inverted-index matrix that additionally represents
the annotations of R and applying Equation (6) aswi ∈ Sann(ej ) ∪
Rann(ej ).

CoME extracts local information about which wordsw andw ′

appear together in each annotation axiom. A co-occurrence matrix
is defined as X local ∈ R |W |× |W | (Figure 2(a)). Each X local

i j indicates
the co-occurrence of wordwi with wordw j . Then, X local

i j is given
by

X local
i j =

{
1 if ∃e ∈ C ∪ I.{wi ,w j } ⊆ Sann(e)

0 otherwise
(7)

Similarly, property annotations are utilized to augment the set of an-
notation words. X local+ ∈ R |W |× |W | is defined as a co-occurrence
matrix that additionally represents the annotations of R ∈ R, and
apply Equation (7) as e ∈ C ∪ I ∪ R.

The dimensions |C∪I| and |W | ofX global
i andX local

i are too large
to be applied to the concept subsumption task, where X ∗

i is a row
vector of X ∗. We transform X global and X local into low-dimensional
word embeddings by applying an autoencoder (Figure 2(b)). The
low-dimensional middle layer H∗ is given by

H∗ = ReLU(ŴinX
∗ + b̂in) (8)

where ∗ ∈ { global, global+, local, local+ }.
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Table 1: The statistics of GO, FoodOn, and HeLiS. Words per entity represents the average number of annotation words per
entity after preprocessing. The value in parentheses for HeLiS represents the case where names extracted from the IRI are
added as annotation words.

Ontology Classes Individuals Annotation axioms Words per entity Concept subsumptions Concept assertions

GO 44,244 0 452,028 43.54 72,601 0
FoodOn 28,182 0 142,536 30.07 29,778 0
HeLiS 277 20,318 4,984 0.40(1.83) 261 20,318

Table 2: The evaluation results on the concept subsumption task for GO, FoodOn, and HeLiS.

GO FoodOn HeLiS

Model MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10

RDF2Vec[22] 0.043 0.017 0.057 0.087 0.078 0.053 0.097 0.119 - - - -
TransE[4] 0.015 0.005 0.018 0.030 0.029 0.011 0.044 0.065 - - - -
TransR[17] 0.048 0.016 0.076 0.113 0.072 0.044 0.093 0.130 - - - -
DistMult[30] 0.046 0.018 0.068 0.097 0.076 0.045 0.099 0.134 - - - -
ELEm[16] 0.018 0.005 0.021 0.036 0.040 0.014 0.067 0.099 - - - -
Onto2Vec[23] 0.024 0.008 0.031 0.053 0.034 0.014 0.047 0.064 - - - -
OPA2Vec[24] 0.075 0.032 0.106 0.157 0.093 0.058 0.117 0.156 - - - -
OWL2Vec*[6] 0.170 0.076 0.258 0.376 0.213 0.143 0.287 0.357 0.595 0.451 0.786 0.890

InME 0.183 0.085 0.278 0.402 0.235 0.159 0.317 0.379 0.580 0.437 0.756 0.825
(InME+Pro)∥Word2Vec 0.160 0.073 0.234 0.347 0.242 0.163 0.325 0.398 0.548 0.416 0.697 0.798
(CoME+Pro)∥OWL2Vec* 0.134 0.056 0.197 0.297 0.190 0.125 0.250 0.319 0.621 0.485 0.779 0.871

3.4 Entity Embeddings and Concatenation
Similar to OWL2Vec*, we convert word embeddings into entity
embeddings by averaging the row vectors H∗

i : for allwi ∈ Slabel(e).
The embedding of entity e is expressed as

V ∗
word(e) =

1
|Slabel(e)|

∑
wi ∈Slabel(e)

H∗
i : (9)

For each concept subsumption axiom e1 ⊑ e2, a binary classifier
RF is trained by the entity embeddings Vword(e1) and Vword(e2)
(Figure 2(c)). The score ptrue of e1 and e2 is given by

ptrue(e1, e2) = RF(V ∗
word(e1)| |V

∗
word(e2)) (10)

As the concatenation of InME and CoME, both global and lo-
cal information of annotation axioms can be considered by using
V
global
word (e) || V local

word(e) for each entity e .

4 EXPERIMENTS
We evaluate the performance of InME and CoME on the concept
subsumption task for the three OWL ontologies: GO, FoodOn, and
HeLiS. Our experiment is conducted in the same manner as that of
OWL2Vec* [6].

4.1 Datasets
We use the OWL ontologies, GO [7], FoodOn [9], and HeLiS [10].
GO represents the biological knowledge of genes and their products
expressed by DL SRI. FoodOn represents the knowledge of foods
that contain materials consumed by humans and domesticated
animals, as expressed by DL SRIQ. HeLiS represents the knowl-
edge about food and physical activity domains, expressed by DL

ALCHIQ(D). Whereas HeLiS contains both concept subsump-
tion and concept instance axioms, GO and FoodOn contain only
concept subsumption axioms. The details of these three ontologies
are summarized in Table 1.

In the experiments with HeLiS, some words extracted from the
IRIs of entities are added to the annotation words, as described in
Section 2.2. This process causes a problem in that some evaluations
in validation or testing are always ranked first. For example, in
an axiom, Lysine_100 ⊑ Lysine , the word “Lysine” is added as
each annotation of Lysine_100 and Lysine if these entities have
no annotation; the embeddings of Lysine_100 and Lysine obtained
by averaging the one-word embedding of “Lysine” are identical.
Therefore, we exclude the trivial axioms from validation and testing
data. For the revisedHeLiS, we re-experimentwithOWL2Vec* using
Ds, l,rc, which is the best combination of training corpora [6].

4.2 Experimental Setup
For GO and FoodOn, concept subsumption axioms are randomly
divided into training (70%), validation (10%), and testing (20%). In
HeLiS, concept instance axioms are divided instead of concept
subsumption axioms. The validation data are used for parameter
tuning. The RF classifier is trained with the concept subsumption
(or concept instance) training axioms, as described in Section 2.2.
For each axiom in the validation and testing data, the tail entity e2
is predicted from e1 in concept subsumptions e1 ⊑ e2. Each class
x is sorted in descending order based on the score ptrue(e1,x). We
report the mean reciprocal rank (MRR) and Hits@n (n = 1, 5, 10).

We also evaluate the concatenation of InME or CoME with
other embedding models. We select other embedding models: (a)
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Figure 3: The comparison of MRRs for InME, CoME, and the concatenation of InME and CoME.

OWL2Vec* and (b) a Word2Vec model, which is trained with skip-
gram by annotation axioms. Note that annotation words are trans-
formed into lowercase letters, and non-English characters are re-
moved before training. The best combination of training corpora
for OWL2Vec* is selected from the OWL2Vec* paper [6], Ds, l for
GO, Ds, l for FoodOn, and Ds, l,rc for HeLiS.

We use the compressed dimension n of InME and CoME for
the autoencoder among n = {50, 100, 200}. We select the best
parameter by the highest MRR in the validation data. In addition,
the dimensions of the two concatenated embeddings are 2n.

4.3 Results
Table 2 shows the performance of ourmodels, InME andCoME, com-
pared with existing models, where +Pro is the case property annota-
tions are considered and || is the concatenation of two embeddings.
Note that we site the results of the existing models from OWL2Vec*
[6]. For GO and FoodOn, InME, which only extracts the global
information outperforms OWL2Vec*, which extracts logical and
graph structures as well as annotation axioms in OWL ontologies.
This implies that the global information plays an important role
in predicting concept subsumptions. For the revised HeLiS, InME
underperforms OWL2Vec because HeLiS originally has extremely
few annotation axioms compared to GO and FoodOn, as shown in
Table 1. However, CoME+Pro concatenated with OWL2Vec* em-
beddings outperforms OWL2Vec* in MRR and Hits@1. This result
shows that our models can enhance OWL2Vec* by the fact that the
local information represented in CoME+Pro supplement the lack
of annotations in HeLiS.

Table 3 presents the detailed results of our embedding models in
the experiment. Figure 3 shows the results of the comparison of the
MRRs for InME, CoME, and the concatenation of InME and CoME.
InME shows a higher MRR than the other models for the three
ontologies. In addition, theMRR of InME||CoME outperforms CoME
for GO and FoodOn, but is either below or comparable for InME.
On the other hand, for HeLiS, CoME exhibits a higher MRR than
the concatenation. HeLiS has significantly fewer annotation axioms

than GO and FoodOn, which could have diluted the information
owing to the increased dimension caused by concatenation.

We analyze the embeddings of InME, CoME, and OWL2Vec*
using t-SNE [27]. Figure 4 shows the visualizations in t-SNE of InME,
CoME, and OWL2Vec* for GO, FoodOn, and HeLiS. Each point in
these figures represents a class (or an individual), with the colors
indicating their parent classes. For GO, in both InME and CoME,
classes with a common superclass tend to be clustered on the plot. In
particular, subclasses of SAM (blue points) are circularly distributed
in OWL2Vec*, whereas these points are clustered in InME and
CoME. For FoodOn, a similar trend is observed in OWL2Vec* and
CoME, where subslasses of OC (green points) are evenly distributed
throughout, while the other three subclasses form clusters. On the
other hand, in InME, we observe that many of the subclasses of OC
form a cluster at a single point. These results implies that the global
information of InME ismore appropriate for capturing the similarity
of entities. For HeLiS, the four subclass groups are neatly clustered
in InME, CoME, and OWL2Vec*. The embeddings of entities with
identical annotation words are converted to the same embeddings
through the average of word embeddings by Equation (1) or (9).
The well-divided visualizations of HeLiS are largely influenced by
the small number of annotations and the averaging embedding
transformation method, rather than by the performance of the
models.

We discuss the impact of property annotations for the concept
subsumption task. Table 4 shows a comparison of MRR with and
without property annotations. For GO, InME exhibites a lower
MRR when property annotations are added. However property
annotations in appear the logical structure axioms may introduce
noise to the prediction of concept subsumptions. In other models
and datasets, property annotations results in no change or a slight
improvement in the MRRs. The addition of property annotations
tends to be effective for FoodOn and HeLiS.

5 CONCLUSION
In this study, we proposed the embedding models InME and CoME
in OWL ontologies only using annotation axioms. Our preliminary
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(a) GO

(b) FoodOn

(c) HeLiS

Figure 4: The t-SNE visualizations of the embeddings OWL2Vec*, InME, and CoME for GO, FoodOn, and HeLiS.
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Table 3: The results of our models where other embeddings are concatenated and property annotations are added. Results of
∗ are taken from OWL2Vec* [6].

GO FoodOn HeLiS

Model Concatenation MRR HITS@1 HITS@5 HITS@10 MRR HITS@1 HITS@5 HITS@10 MRR HITS@1 HITS@5 HITS@10

InME
- 0.183 0.085 0.278 0.402 0.235 0.159 0.317 0.379 0.580 0.437 0.756 0.825
OWL2Vec* 0.153 0.069 0.224 0.332 0.208 0.137 0.277 0.348 0.596 0.460 0.768 0.851
Word2Vec 0.158 0.070 0.234 0.348 0.236 0.160 0.317 0.378 0.547 0.400 0.699 0.807

InME+Pro
- 0.164 0.074 0.245 0.362 0.235 0.155 0.318 0.397 0.573 0.439 0.722 0.839
OWL2Vec* 0.151 0.065 0.227 0.330 0.223 0.150 0.294 0.369 0.606 0.474 0.775 0.837
Word2Vec 0.160 0.073 0.234 0.347 0.242 0.163 0.325 0.398 0.548 0.416 0.697 0.798

CoME

- 0.160 0.072 0.246 0.354 0.200 0.140 0.262 0.315 0.568 0.441 0.713 0.805
OWL2Vec* 0.136 0.057 0.199 0.303 0.185 0.121 0.242 0.311 0.614 0.476 0.784 0.871
Word2Vec 0.145 0.064 0.210 0.318 0.212 0.141 0.281 0.341 0.499 0.366 0.639 0.763
InME 0.175 0.080 0.267 0.388 0.236 0.168 0.305 0.358 0.563 0.434 0.720 0.811

CoME+Pro

- 0.151 0.068 0.228 0.333 0.200 0.131 0.271 0.330 0.566 0.437 0.715 0.795
OWL2Vec* 0.134 0.056 0.197 0.297 0.190 0.125 0.250 0.319 0.621 0.485 0.779 0.871
Word2Vec 0.140 0.060 0.205 0.313 0.213 0.145 0.277 0.341 0.537 0.414 0.680 0.752
InME 0.171 0.078 0.259 0.378 0.239 0.166 0.313 0.376 0.577 0.448 0.738 0.818

OWL2Vec*[6] - 0.170∗ 0.076∗ 0.258∗ 0.376∗ 0.213∗ 0.143∗ 0.287∗ 0.357∗ 0.595 0.451 0.786 0.890
Word2Vec 0.139 0.062 0.201 0.304 0.219 0.145 0.294 0.363 0.527 0.393 0.669 0.800

Table 4: The comparison of InME, InME||Word2Vec, and CoME||OWL2Vec* with and without property annotations.

GO FoodOn HeLiS

Model With property annotations MRR MRR MRR

InME Yes 0.164 0.235 0.573
No 0.183 0.235 0.580

InME||Word2Vec Yes 0.160 0.242 0.548
No 0.158 0.236 0.547

CoME||OWL2Vec* Yes 0.134 0.190 0.621
No 0.136 0.185 0.614

experiment showed that the Word2Vec with annotation axioms
outperforms that with logical structure axioms in the concept sub-
sumption task. We showed that the local information, which is
the co-occurrence of annotation words, and the global informa-
tion, which is the relationship between an entity and annotation
words, contribute to deciding parent-child relationships in an on-
tology. To extract these information, we defined InME and CoME
using inverted-index and co-occurrence matrices. In the evaluation
experiments, we demonstrated that InME outperformed existing
models for GO and FoodOn, and that CoME+Pro concatenated with
OWL2Vec* outperformed existing models for HeLiS. These results
show that the global information plays an important role in the
concept subsumption task. For HeLiS, which has a limited number
of annotation words, CoME+Pro concatenated with OWL2Vec* out-
perform existing models. This result indicates that our models can
improve OWL2Vec* by leveraging the local information through
the concatenation due to the lack of annotations in HeLiS.

In future work, there is further research to leverage the logical
structure axioms in our models to improve prediction accuracy.
Additionally, our InME and CoME can be applied to other tasks,
such as subsumption ontology tasks for more complex classes (e.g.,
C ⊑ ∃R.D).
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A APPENDIX
Table 5 displays the hyper-parameters of dimensions selected by the
performance of the validation data in our experiments, as described
in Table 3.
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