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ABSTRACT
Recently, there has been a surge of interest in the NLP commu-
nity in using Pre-trained Language Models (PLMs) as general or
domain-specific Knowledge Bases. However, previous evaluation
settings are under the Closed-World Assumption. In this paper, we
propose open-world knowledge probing and provide an empiri-
cal analysis of biomedical PLMs on three datasets. We find that
the previous evaluation setting may underestimate the knowledge
from the PLMs. We further integrate scientific knowledge into the
prompt design and propose SciPrompt, leading to better perfor-
mance for biomedical knowledge probing. We hope our work can
better understand the knowledge learned from PLMs and inspire
further research for scientific knowledge discovery.
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1 INTRODUCTION
Recent studies [1, 7, 14] have demonstrated that Pre-trained Lan-
guage Models (PLMs) implicitly contain different kinds of knowl-
edge [11] in their parameters without the need of human super-
vision. This is typically done by formulating knowledge triples
as cloze-style queries with the objects being masked and using
the PLM to fill the single or multiple [Mask] token(s) [3, 8, 20]. In
the biomedical domain, it has been shown that specialized PLMs
(e.g., BioBERT [9], Bio-LM [10]) potentially contain the implicit
Knowledge Graphs (KGs) [2, 13, 18].

Existing research [16] on knowledge probing operates under
the Closed-World Assumption (CWA) [15] in which all entities and
relations already exist in the KG – they are only knowledge which
has been discovered. However, the introduction of PLMs may bring
in much-unseen knowledge, which is considered incorrect under
CWA, wrongly lowering the knowledge probing performance. As
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Pre-trained Language Model 

Pre-trained Corpus: People with COVID-19 have
had a wide range of symptoms reported：Fever
or chills，Cough，Shortness of breath or difficulty
breathing，Fatigue，Muscle or body aches，
Headache，New loss of taste or smell ...

Covid-19  variant Omicron has symptom

Triple:<Omicron, has_symptom , ?>
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Figure 1: Illustration of open-world knowledge probing for
biomedical PLMs.

shown in Figure 1, for a triple query (Omicron, has_symptom, ?),
the PLM model gives many correct tail entities, but only Cough,
Fatigue and Sore throat are considered correct under CWA since it
exists in KGs.

In this work, we borrow the idea of open-world assumption
[4, 17] to develop the open-world knowledge probing for PLMs
[12]. With an empirical study by biomedical PLMs on three datasets,
we notice that the previous evaluation setting may underestimate
the performance of knowledge probing, and parts of the probed
knowledge are correct via expert verification. These results indicate
that previous knowledge probing methods miss many essential
correct facts that may contribute to knowledge discovery from self-
supervised pre-training. Moreover, we conduct a comprehensive
analysis to find essential patterns of those “new” triples (not existing
in KG under CWA). We observe that similar semantic facts account
for lots of them, while some other facts are not related to existing
KG, which is interesting for further investigation. We also propose
a new simple probing method, SciPrompt, which utilizes scientific
knowledge in prompt design and yields better performance.

The rest of the paper is organized as follows. Section 2 introduces
our new probing method, SciPrompt, along with the knowledge
verification procedure. Section 3 introduces our experimental set-
ting and analyzes the intrinsic patterns of those “new” triples probed
from PLMs under open-world assumption. Section 4 and Section
5 conclude the paper while discussing the existing challenges and
future directions.

2 OPEN-WORLD KNOWLEDGE PROBING
In this section, we introduce the open and close-world assump-
tions and detail the probing method, SciPrompt, and knowledge
verification procedure.
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Table 1: Main results in CWA setting.We report Acc@1/Acc@5 of eachmodel, including themacro average across three different
knowledge sources. The highest scores are boldfaced.

Source
BioBERT Bio-LM

Manual Opti. SciPrompt Manual Opti. SciPrompt

Wikidata 3.67 / 11.2 3.21 / 10.75 3.50 / 11.17 11.97 / 25.92 10.09 / 24.76 10.92 / 26.50
UMLS 1.15 / 3.81 4.91 / 12.71 5.85 / 13.93 3.44 / 8.88 8.01 / 19.04 9.37 / 20.90
ProteinKG25 0.06 / 0.28 8.41 / 18.81 8.43 / 24.60 0.58 / 2.15 6.10 / 20.26 8.11 / 21.99

2.1 Open vs. Close-World Setting
Closed-world assumption (CWA) believes that the triples that do not
appear in a given knowledge graph are wrong, which is essentially
an approximation. Open-world assumption (OWA) assumes that
the triples contained in the KG are not complete, which is more
accurate and closer to the real scenario. The knowledge not in
KGs is not false, but unknown. However, it requires additional
human annotations to verify those triples carefully. In this paper,
we introduce open-world knowledge probing for PLMs. We ask
human experts to verify triples and tag them as correct, incorrect,
and unknown (triples that can not be verified through resources
on the Web). All annotated and verified data will be released for
research purposes.

2.2 Knowledge Sources
WikidataWikidata1 is a public Knowledge Base with many factual
knowledge across various domains.
UMLS The UMLSMetathesaurus2 is a biomedical knowledge graph
that contains various vocabularies and concepts in the biomedical
domain.
ProteinKG25 ProteinKG253 is a knowledge graph for protein sci-
ence that contains descriptions and protein sequences (entity nodes).
We use a sub-set of the ProteinKG25 with the relation is a, is part
of, and has part.

2.3 Probing Methods
Vanilla Prompt. We use a fill-in-the-blank cloze statement for

probing and adopt two baseline methods: manual prompts [14], and
OptiPrompt [22]. For each relation, we follow Sung et al.[18] to cre-
ate manual prompts with domain experts. In addition, OptiPrompt
automatically obtains continuous embeddings, which are trained
with disjoint instances.

SciPrompt. We additionally propose a new prompt-basedmethod,
SciPrompt, for probing. Specifically, we utilize scientific terms to
construct discrete prompt tokens. We also add some continuous
tokens, which make prompts using any vector in the embedding
space. Formally, our prompt has the following form:

𝑡𝑟 = [Term]1 . . . [Term]𝑚 [ P]1 . . . [P]𝑛 [MASK], (1)

where each [Term] is a discrete token from scientific terms re-
lated to relation 𝑟 , each [P]𝑖 ∈ R𝑑 is a dense vector with the same

1https://wikidata.org/
2https://www.nlm.nih.gov/research/umls/
3https://zjunlp.github.io/project/ProteinKG25
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Figure 2: Procedure of human experts verification.

dimension as the LM’s input embedding. We initialize the continu-
ous embeddings with the embeddings of manual prompts, which
worked consistently better than random initialization. With those
scientific terms and learnable tokens, our SciPrompt can take ad-
vantage of domain knowledge as knowledge-informed prompts to
elicit scientific factual knowledge. Following Sung et al.[18], we
use gradient descent to minimize the negative log-likelihood for
prompt optimization.

From Table 1, we observe that SciPrompt can obtain better
performance, indicating the advantages of scientific knowledge
guidance. Notably, manual prompt also perform well in Wikidata,
possibly because Wikidata belongs to general domain. We lever-
age the best-performed model to generate candidate triples. For
Top-1 triples that do not exist in the KG under OWA, we leverage
knowledge verification addressed in the following section.

2.4 Knowledge Verification
During knowledge verification, we randomly sample 100 Top-1
triples for each relation that do not exist in the KG under CWA,
resulting in a total number of 2.4K triples across three datasets.
Each triple is annotated by 5 human experts with a biomedical
background and proficiency in English as a second language. These
human experts are trained for the well-designed knowledge verifi-
cation procedure.

https://wikidata.org/
https://www.nlm.nih.gov/research/umls/
https://zjunlp.github.io/project/ProteinKG25


Open-World Biomedical Knowledge Probing and Verification IJCKG’23, Dec 08–09, 2023, Toykyo, Japan

Table 2: Main results in OWA setting. We report CR@1/PR@1 of each relation.

Relation ID Relation Name Subject Object #Triples CR@1 PR@1

Wikidata

P2175 medical condition treated chemical disease 704 20 21
P2176 drug used for treatment disease chemical 435 34 40
P2293 genetic association gene disease 830 11 13
P4044 therapeutic area chemical disease 344 14 14
P780 symptoms disease symptom 303 44 49

UMLS

UR116 clinically associated with disease disease 773 14 24
UR124 may treat disease chemical 531 24 27
UR173 causative agent of disease vertebrate 560 63 66
UR180 is finding of disease disease body substance 419 12 20
UR211 biological process involves gene product gene function 736 27 56
UR214 cause of disease disease 548 21 26
UR221 gene mapped to disease disease gene 247 10 30
UR254 may be finding of disease disease symptom 614 33 46
UR256 may be molecular abnormality of disease disease genetic aberrant 262 7 58
UR44 may be prevented by chemical disease 507 23 24
UR45 may be treated by chemical disease 864 25 28
UR48 physiologic effect of chemical disease 834 1 37
UR49 mechanism of action of chemical function 755 5 38
UR50 therapeutic class of chemical type 738 13 91
UR588 process involves gene gene disease 750 16 77
UR625 disease has associated gene gene disease 465 4 7

ProteinKG25

P0 is a gene function gene function 19891 7 96
P1 is part of gene function gene function 3374 12 94
P3 has part gene function gene function 301 31 99

As shown in Figure 2, we ask these human experts to verify those
candidate triples under OWA. Human experts are asked to search
the triple knowledge on Wikipedia to verify the correctness. For
those candidate triples not existing in Wikipedia, human experts
will search MalaCards4(an integrated database of human maladies
and their annotations) for disease-related entities, Drugbank5(a
comprehensive, freely accessible, online database containing infor-
mation on drugs and drug targets) for drug-related entities, and
GeneCards6(a searchable, integrative database that provides com-
prehensive, user-friendly information on all annotated and pre-
dicted human genes) for gene-related entities. Human experts will
utilize Google to verify triples when the candidate triple does not
exist in the database mentioned above. The triple is tagged with
correct or wrong when there is a shred of solid evidence in the
text from the existing authoritative biomedical corpus. The triple
is tagged with unknown when there is no substantial evidence on
the Web and these human experts are also unable to confirm.
4https://www.malacards.org/
5https://go.drugbank.com/
6https://www.genecards.org/

For each triple, we follow above annotation process and statistics
votes of 5 human experts, ultimately concluding with the final result
based on the majority consensus. The entire annotation procedure
is an exhaustive endeavor, spanning approximately one month in
total. To further assess the quality and agreement of annotations,
we calculate the average inter-rater agreement between annotators
using Fleiss’ Kappa scores [5], finding that annotations show perfect
agreement (𝜅 = 0.9).

3 EXPERIMENTS
3.1 Settings
We follow Sung et al.[18] to reprocess all the datasets. For the open-
world knowledge probing setting, we utilize CR@1 and PR@1 as
evaluation metrics, which indicates absolute correct and partial
correct (including absolute correct and those unknown triples),
respectively. We argue that those unknown triples (triples that
cannot be verified based on the present information on theWeb) are
valuable, and possibly part of them can be proved experimentally
in the future.

https://www.malacards.org/
https://go.drugbank.com/
https://www.genecards.org/
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Figure 3: Case study for triples in OWA setting. We analyze those triples tagged correctly by human experts and divide them
into four groups.

3.2 Results
Is this knowledge from PLMs correct? From Table 2, we notice

that part of the knowledge from all datasets is actually correct
when verified by human experts, which indicates that we may
underestimate the rich knowledge from the PLMs. Note that the
triples with causative agent of even obtain 63 CR@1 and 66 PR@1
scores, illustrating that PLMhas the potential ability to discover
“new” scientific knowledge.

What are the characteristics of this knowledge? To further inves-
tigate the intrinsic characteristic of this knowledge in the OWA
setting, as shown in Figure 3, we conduct a manual analysis of these
annotated correct triples and categorize them into four groups
as follows :

Group 1: The predicted tail entity is independent of the
golden entity.We observe that 38% of the tail entities in predicted
triples have little relevance to the golden entities but are actually
correct by human expert verification based on public information.
We argue that this may be because, during pre-training, the PLMs
have seen lots of patterns, leading to knowledge recalling.

Group 2: The predicted tail entity is a subtype of golden
entities.We observe that 14% of the predicted entities are subtypes
of golden entities, indicating that PLMs have the powerful ability
to capture useful lexical-type knowledge, which is consistent with
[6].

Group 3: The golden entity is a subtype of predicted tail
entities.We observe that 34% of the golden entities are subtypes
of predicted entities, demonstrating that PLMs can capture lots of
hierarchy knowledge (e.g., a subtype of).

Group 4: The golden entity is a synonym of the golden
entity.We observe that 14% of the predicted entities are synonyms
of golden entity, which illustrates that PLMs have the powerful
ability to memorize synonyms.

Overall, we notice that this knowledge with open-world knowl-
edge probing from PLMs has part of intrinsic patterns but also
contains unknown emerging abilities of knowledge discovery
[21]. We think it is interesting to study the potential ability of large-
scale PLMs via open-world knowledge probing, as it promises to
uncover even more hidden knowledge.

4 DISCUSSION
Recently, PLMs have been suggested as a possible complement
to KGs. However, previous studies focus on probing the existing
knowledge (CWA Setting) rather than exploring the “new” (OWA
Setting). We think this approach is complementary to the existing
evaluation system (e.g., LAMA, BioLAMA) and can serve as a scaf-
fold for investigating open knowledge in PLMs. We hope that by
uncovering the potential ability of PLMs with open-world knowl-
edge probing, we can continue to motivate exploring the positives
of pre-training intrinsically and apply the technology for automatic
science knowledge discovery.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose open-world knowledge probing for biomed-
ical PLMs. We provide an empirical analysis of three datasets and
find that the previous evaluation setting may underestimate the
knowledge from the PLMs. We further propose SciPrompt, which
integrates scientific knowledge into the prompt, obtaining better
performance for biomedical knowledge probing. We hope that our
work can contribute to a deeper understanding of the knowledge
learned from PLMs and inspire further research for scientific knowl-
edge discovery. In the future, we plan to study the evaluation strate-
gies for open-world knowledge probing via fact verification [19]
and systematically re-evaluate the existing PLMs to reveal their
real performance.
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