
Rule-based Fact Verification Utilizing Knowledge
Graphs
Yuki Momii1, Tetsuya Takiguchi1 and Yasuo Ariki1

1Graduate School of System Informatics, Kobe University, Japan

Abstract
In this paper, we propose a method for performing Fact Verification using the structure of a knowledge
graph and pre-defined rules. We focus on the classification of claims into five reasoning types based on
the knowledge graph in FACTKG and manually create classification-specific rules. This method allows
us to create rules that are independent of entities and relations. Experimental results with FACTKG show
that rule-based judgments achieve a sufficient level of label accuracy.

Keywords
Knowledge Graph for Explainable Inference, Rule-based Fact Verification, Manually Created Rule

1. Introduction

Nowadays, with the widespread of misinformation, there is a growing demand for Fact Ver-
ification to determine the veracity of claims. In conventional Fact Verification, evidence is
retrieved from external sources (Retriever), and the judgment is predicted by LLM (Reader)
based on the evidence[1]. However, when LLM is used as the Reader, the inference process that
leads to the final judgment becomes a black box, lacking explainability. On the other hand, a
method has been proposed to perform rule-based judgments incorporating logical symbols as a
Reader, rather than using LLM for judgment[2]. This method has high accuracy on FEVER[3], a
representative dataset of Fact Verification, while enhancing explainability. In this paper, we
propose a rule-based approach similar to [2], but utilizes a knowledge graph. We created rules
to deal with the five reasoning types of Fact Verification defined in FACTKG[4]. A key difference
from [2] is that external sources are interpretable knowledge graphs, not text. Experimental
results with FACTKG show that rule-based judgments achieve a sufficient level of accuracy.

2. FACTKG

FACTKG (Fact Verification via Reasoning on Knowledge Graphs)[4] is a dataset for Fact Veri-
fication that leverages knowledge graph. It classifies claims into four reasoning types based
on the structure of the knowledge graph (Table 1). For each type, Negation is also created by
adding negations (e.g. ‘not’ or ‘never’), resulting in a total of five types.

• One-Hop: Claims can be verified with a single knowledge triple. In Table 1, if triple
(AIDAStella, Builder, Meyer Werft) exists, it is labeled as SUPPORTED.

IJCKG 2023 Poster and Demo track
Envelope-Open 235x075x@gsuite.kobe-u.ac.jp (Y. Momii); takigu@kobe-u.ac.jp (T. Takiguchi); ariki@kobe-u.ac.jp (Y. Ariki)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:235x075x@gsuite.kobe-u.ac.jp
mailto:takigu@kobe-u.ac.jp
mailto:ariki@kobe-u.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


• Conjunction: Claims can be verified with multiple knowledge triples. Both (AIDAstella,
Operator, AIDA Cruises) and (AIDAstella, Builder, Meyer Werft) need to exist for it to be
labeled as SUPPORTED.

• Existence: Claims can be determined based on whether a specific relation exists. If Meyer
Werft has the parentCompany, it is labeled as SUPPORTED.

• Multi-Hop: Entities in Conjunction are transformed into common nouns. If both (AIDAstella,
Builder, x) and (x, location, Papenburg) exist, it is labeled as SUPPORTED.

Table 1
Four different reasoning types of FACTKG cited from [4].r1: parentCompany, r2: Builder, r3: Operator,
r4: location, m: Meyer Werft, s: AIDAstella, c: AIDA Cruise, p: Papenburg.

Reasoning type Claim Example Graph

One-Hop AIDAstella was built by Meyer Werft.

Conjunction
AIDA Cruise line operated the AIDAstella which
was built by Meyer Werft.

Existence Meyer Werft had a parent company.

Multi-Hop AIDAstella was built by a company in Papenburg.

All claims are labeled as SUPPORTED or REFUTED. REFUTED claims are created by replacing
an entity in SUPPORTED claims with another entity. In the case of One-Hop, relation substitu-
tion can also be done. Negation creation depends on the type. For One-Hop and Existence, they
are created by adding negations into the claim and inverting the label. In the case of Conjunction,
it is labeled as SUPPORTED only if negations are added to all parts with substituted entities. In
Multi-Hop, the label is based on the actual knowledge graph. For example,“AIDAstella was built
by a company, not in Papenburg” is labeled as SUPPORTED if (AIDAstella, Builder, x) and (x,
location, y) exist, and y is not Papenburg. In Negation with Conjunction (or Multi-Hop), the
number of entities are fixed at 3 (or 2), and the number of hops is 2. The rules are applied under
those conditions. However, extensions are possible with sentence parsing.

3. Proposed Method

Our proposed method consists of three predictors(Relation, Reasoning type, Negation) and
manually created rules. Appropriate rules are selected based on predictors’ result.
All predictors employ BERT(bert-base-uncased)[5]. Relation Predictor takes“Claim[SEP]Entity”
as input and predicts relations as multi-labels for all entities in the claim. Then they are
combined to form Relation Set 𝑅. Reasoning type Predictor classifies the claim based on the
categories in Table 1. Negation Predictor predicts whether negations are added.
Rule-based judgment

• One-Hop (Figure 1(a)): For this type, we verify whether the entities in the claim are
directly connected each other. If not, we determine that the claim is based on incorrect
knowledge triples and predict it as REFUTED. Otherwise, we verify if they’re connected
by the relations included in 𝑅, and if so, we predict it as SUPPORTED. This decision
allows for handling cases where the claim incorrectly represents entities relationship.



Figure 1: Proposed Method: Rule Base Fact Verification based on claim type (a)One-Hop,Conjunc-
tion(b)Existence(c)Multi-Hop

• Conjunction (Figure 1(a)): Like One-Hop, we check if all entities are connected or not.
• Existence (Figure 1(b)): In this type, we retrieve all relations possessed by the entity in
the claim, and if there is any common relation with 𝑅, we predict it as SUPPORTED.

• Multi-Hop (Figure 1(c)): We arrange 𝑅 to generate candidate paths. Then, we search
for subgraph by exploring from one entity in the claim along candidate paths, and if all
entities appear in subgraph, we predict it as SUPPORTED. Note that the hop count of
subgraph is fixed at 3. This is because the maximum hop count in the dataset is 3, and
the final judgment is not based on LLM. We need not to consider the size of subgraph.

Rule-based judgment with negated claims

• One-Hop, Existence: We reverse the predicted labels without negation.
• Conjunction: First, we examine the #number of entities that don’t connect with other
entities. #0: We predict it as REFUTED. #1: In the case of third line of Table 1, either of
the entities at both ends is replaced. #3:This occurs when the central entity is replaced. In
cases #1 and #3, subsequently, the negations and the position of the entity are identified
through keyword matching. We predict it as SUPPORTED only when negations are
present in all positions related to the substituted entity.

• Multi-Hop: In this case, we search for edge entities with predicted relations of each
entity. Then common entities are excluded. The position of the entities and negations
are determined in the claim, and 𝑁𝑒, entities not related to replaced entity is identified. If
𝑁𝑒 has one or more excluded edge entities, we predict it as SUPPORTED.

4. Experiment

The baseline (Model-Based) refers to FACTKG’s baseline. Relation prediction is performed
in a manner similar to the proposed method, and the number of hops required for graph
traversal is also predicted. Using the acquired subgraph, the final judgment is predicted by
classifier(BERT(bert-base-cased) with linear layer). FACTKG is used to train our predictors and
baseline’s classifier as the dataset, but the test data lacks the necessary subgraph for judgment,
so we divided the validation data into two parts to create new validation and test data. Besides
the simple accuracy (LA), we report the evaluation of Evidence Enhanced Label Accuracy



Table 2
Fact verification accuracy with and without negation.

One-Hop Conjunction Existence Multi-Hop
Nor Neg Nor Neg Nor Neg Nor Neg

LA 0.8242 0.6986 0.8421 0.8726 0.9268 0.9621 0.707 0.6368
Model Based EELA 0.6586 0.5284 0.4646 0.5802 0.9247 0.9621 0.2947 0.3582

OLA 0.9231 0.8668 0.9393 0.8962 0.9978 0.9962 0.7480 0.7711
LA 0.8375 0.8652 0.7693 0.7925 0.9398 0.9697 0.7238 0.6418

Rule Based(Ours) EELA 0.7009 0.734 0.4844 0.5708 0.9376 0.9697 0.3757 0.3483
OLA 0.9027 0.9787 0.8814 0.8443 1.000 1.000 0.9000 0.7562

(EELA), which considers relation prediction errors as judgment errors. Furthermore, Oracle
Label Accuracy (OLA), which indicates the accuracy when correct relations are provided. Table
2 shows the results. The proposed method performed better in many of the reasoning types.

5. Conclusion

We proposed a rule-based method for fact verification using a knowledge graph, aiming for
better explainability and accuracy. Difference between LA and EELA of model-based method
reveals that it may predict correct results with incorrect reasoning. Future work will focus
on quantitative assessments of explainability. Furthermore, we will incorporate grammatical
interpretation to avoid errors in determining relations related to negations.
Acknowledgements
This work was supported in part by JSPS KAKENHI (Grant No. JP21H00906).

References

[1] M. DeHaven, S. Scott, BEVERS: A general, simple, and performant framework for automatic
fact verification, in: Proceedings of the Sixth Fact Extraction and VERification Workshop
(FEVER), Association for Computational Linguistics, Dubrovnik, Croatia, 2023, pp. 58–65.
doi:10.18653/v1/2023.fever-1.6.

[2] A. Krishna, S. Riedel, et al., Proofver: Natural logic theorem proving for fact verification,
Transactions of the Association for Computational Linguistics 10 (2021) 1013–1030.

[3] J. Thorne, A. Vlachos, et al., FEVER: a large-scale dataset for fact extraction and VERification,
in: Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
Association for Computational Linguistics, New Orleans, Louisiana, 2018, pp. 809–819.
doi:10.18653/v1/N18-1074.

[4] J. Kim, S. Park, et al., FactKG: Fact verification via reasoning on knowledge graphs, in:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computational Linguistics, Toronto, Canada, 2023,
pp. 16190–16206. doi:10.18653/v1/2023.acl-long.895.

[5] J. Devlin, M.-W. Chang, et al., BERT: Pre-training of deep bidirectional transformers for
language understanding, in: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis,
Minnesota, 2019, pp. 4171–4186. doi:10.18653/v1/N19-1423.

http://dx.doi.org/10.18653/v1/2023.fever-1.6
http://dx.doi.org/10.18653/v1/N18-1074
http://dx.doi.org/10.18653/v1/2023.acl-long.895
http://dx.doi.org/10.18653/v1/N19-1423

	1 Introduction
	2 FACTKG
	3 Proposed Method
	4 Experiment
	5 Conclusion

